library(ComplexHeatmap)
#> Loading required package: grid
#> ========================================
#> ComplexHeatmap version 2.22.0
#> Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
#> Github page: https://github.com/jokergoo/ComplexHeatmap
#> Documentation: http://jokergoo.github.io/ComplexHeatmap-reference
#>
#> If you use it in published research, please cite either one:
#> - Gu, Z. Complex Heatmap Visualization. iMeta 2022.
#> - Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional
#> genomic data. Bioinformatics 2016.
#>
#>
#> The new InteractiveComplexHeatmap package can directly export static
#> complex heatmaps into an interactive Shiny app with zero effort. Have a try!
#>
#> This message can be suppressed by:
#> suppressPackageStartupMessages(library(ComplexHeatmap))
#> ========================================
library(pheatmap)
#>
#> Attaching package: 'pheatmap'
#> The following object is masked from 'package:ComplexHeatmap':
#>
#> pheatmap
library(gplots)
#>
#> Attaching package: 'gplots'
#> The following object is masked from 'package:stats':
#>
#> lowess
library(ggalign)
#> Loading required package: ggplot2
Compared with other packages
A simple heatmap.
bench::mark(
"heatmap()" = {
pdf(NULL)
heatmap(mat, Rowv = NA, Colv = NA)
dev.off()
NULL
},
"heatmap.2()" = {
pdf(NULL)
heatmap.2(mat, dendrogram = "none", trace = "none")
dev.off()
NULL
},
"Heatmap()" = {
pdf(NULL)
draw(Heatmap(mat,
cluster_rows = FALSE, cluster_columns = FALSE,
use_raster = TRUE
))
dev.off()
NULL
},
"pheatmap()" = {
pdf(NULL)
pheatmap(mat, cluster_rows = FALSE, cluster_cols = FALSE)
dev.off()
NULL
},
"ggalign()" = {
pdf(NULL)
print(ggheatmap(mat, filling = "raster"))
dev.off()
NULL
}
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 5 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 heatmap() 147.38ms 266.03ms 3.76 139.11MB 5.64
#> 2 heatmap.2() 2.24s 2.24s 0.446 224.23MB 0.446
#> 3 Heatmap() 4.3s 4.3s 0.232 792.59MB 2.79
#> 4 pheatmap() 865.8ms 865.8ms 1.15 124.1MB 1.15
#> 5 ggalign() 1.86s 1.86s 0.537 2.51GB 12.4
For heatmap with dendrogram
bench::mark(
"heatmap()" = {
pdf(NULL)
heatmap(mat)
dev.off()
NULL
},
"heatmap.2()" = {
pdf(NULL)
heatmap.2(mat, trace = "none")
dev.off()
NULL
},
"Heatmap()" = {
pdf(NULL)
draw(Heatmap(mat,
row_dend_reorder = FALSE, column_dend_reorder = FALSE,
use_raster = TRUE
))
dev.off()
NULL
},
"pheatmap()" = {
pdf(NULL)
pheatmap(mat)
dev.off()
NULL
},
"ggalign()" = {
pdf(NULL)
print(ggheatmap(mat, filling = "raster") +
anno_top() + align_dendro() +
anno_right() + align_dendro())
dev.off()
NULL
}
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 5 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 heatmap() 2.6s 2.6s 0.385 173.72MB 1.15
#> 2 heatmap.2() 2.78s 2.78s 0.359 223.41MB 1.44
#> 3 Heatmap() 5.86s 5.86s 0.171 1.51GB 2.05
#> 4 pheatmap() 2.3s 2.3s 0.435 177.53MB 0.870
#> 5 ggalign() 4.89s 4.89s 0.205 2.58GB 4.50