Usage
# S3 method for class 'dendrogram'
fortify_data_frame(
data,
...,
priority = "right",
center = FALSE,
type = "rectangle",
leaf_pos = NULL,
leaf_braches = NULL,
reorder_branches = TRUE,
branch_gap = NULL,
root = NULL,
double = TRUE,
data_arg = caller_arg(data),
call = NULL
)
# S3 method for class 'hclust'
fortify_data_frame(data, ...)
Arguments
- data
A
hclust
or adendrogram
object.- ...
Additional arguments passed to
dendrogram
method.- priority
A string of "left" or "right". if we draw from
right
toleft
, the left will override the right, so we take the"left"
as the priority. If we draw fromleft
toright
, the right will override the left, so we take the"right"
as priority. This is used byalign_dendro()
to provide support of facet operation in ggplot2.- center
A boolean value. if
TRUE
, nodes are plotted centered with respect to all leaves/tips in the branch. Otherwise (default), plot them in the middle of the direct child nodes.- type
A string indicates the plot type,
"rectangle"
or"triangle"
.- leaf_pos
The x-coordinates of the leaf node. Must be the same length of the number of observations in
tree
.- leaf_braches
Branches of the leaf node. Must be the same length of the number of observations in
tree
. Usually come from cutree.- reorder_branches
A single boolean value, indicates whether reorder the provided
leaf_braches
based on the actual index.- branch_gap
A single numeric value indicates the gap between different branches.
- root
A length one string or numeric indicates the root branch.
- double
A single logical value indicating whether horizontal lines should be doubled when segments span multiple branches. If
TRUE
, the horizontal lines will be repeated for each branch that the segment spans. IfFALSE
, only one horizontal line will be drawn. This is used byalign_dendro()
to provide support of facet operation in ggplot2.- data_arg
The argument name for
data
. Developers can use it to improve messages. Not used by the user.- call
The execution environment where
data
and other arguments for the method are collected, e.g.,caller_env()
. Developers can use it to improve messages. Not used by the user.
Value
A data frame
with the node coordinates:
.panel
: Similar withpanel
column, but always give the correct branch for usage of the ggplot facet..index
: the original index in the tree for the the nodelabel
: node label textx
andy
: x-axis and y-axis coordinates for the nodebranch
: which branch the node is. You can use this column to color different groups.panel
: which panel the node is, if we split the plot into panel using facet_grid, this column will show which panel the node is from. Note: some nodes may fall outside panel (between two panels), so there are possibleNA
values in this column.leaf
: A logical value indicates whether the node is a leaf.
ggalign attributes
edge
: A data frame
for edge coordinates:
.panel
: Similar withpanel
column, but always give the correct branch for usage of the ggplot facet.x
andy
: x-axis and y-axis coordinates for the start node of the edge.xend
andyend
: the x-axis and y-axis coordinates of the terminal node for edge.branch
: which branch the edge is. You can use this column to color different groups.panel1
andpanel2
: The panel1 and panel2 columns have the same functionality aspanel
, but they are specifically for theedge
data and correspond to both nodes of each edge.
See also
Other fortify_data_frame methods:
fortify_data_frame.character()
,
fortify_data_frame.default()
,
fortify_data_frame.matrix()
,
fortify_data_frame.phylo()
Examples
fortify_data_frame(hclust(dist(USArrests), "ave"))
#> .index label x y branch leaf panel .panel
#> 1 9 Florida 1.000000 0.000000 root TRUE <NA> <NA>
#> 2 33 North Carolina 2.000000 0.000000 root TRUE <NA> <NA>
#> 3 NA <NA> 1.500000 38.527912 root FALSE <NA> <NA>
#> 4 5 California 3.000000 0.000000 root TRUE <NA> <NA>
#> 5 20 Maryland 4.000000 0.000000 root TRUE <NA> <NA>
#> 6 3 Arizona 5.000000 0.000000 root TRUE <NA> <NA>
#> 7 31 New Mexico 6.000000 0.000000 root TRUE <NA> <NA>
#> 8 NA <NA> 5.500000 13.896043 root FALSE <NA> <NA>
#> 9 NA <NA> 4.750000 15.453120 root FALSE <NA> <NA>
#> 10 NA <NA> 3.875000 28.012211 root FALSE <NA> <NA>
#> 11 8 Delaware 7.000000 0.000000 root TRUE <NA> <NA>
#> 12 1 Alabama 8.000000 0.000000 root TRUE <NA> <NA>
#> 13 18 Louisiana 9.000000 0.000000 root TRUE <NA> <NA>
#> 14 NA <NA> 8.500000 15.454449 root FALSE <NA> <NA>
#> 15 NA <NA> 7.750000 16.891499 root FALSE <NA> <NA>
#> 16 13 Illinois 10.000000 0.000000 root TRUE <NA> <NA>
#> 17 32 New York 11.000000 0.000000 root TRUE <NA> <NA>
#> 18 NA <NA> 10.500000 6.236986 root FALSE <NA> <NA>
#> 19 22 Michigan 12.000000 0.000000 root TRUE <NA> <NA>
#> 20 28 Nevada 13.000000 0.000000 root TRUE <NA> <NA>
#> 21 NA <NA> 12.500000 13.297368 root FALSE <NA> <NA>
#> 22 NA <NA> 11.500000 18.417331 root FALSE <NA> <NA>
#> 23 NA <NA> 9.625000 26.363428 root FALSE <NA> <NA>
#> 24 2 Alaska 14.000000 0.000000 root TRUE <NA> <NA>
#> 25 24 Mississippi 15.000000 0.000000 root TRUE <NA> <NA>
#> 26 40 South Carolina 16.000000 0.000000 root TRUE <NA> <NA>
#> 27 NA <NA> 15.500000 21.167192 root FALSE <NA> <NA>
#> 28 NA <NA> 14.750000 28.095803 root FALSE <NA> <NA>
#> 29 NA <NA> 12.187500 39.394633 root FALSE <NA> <NA>
#> 30 NA <NA> 8.031250 44.283922 root FALSE <NA> <NA>
#> 31 NA <NA> 4.765625 77.605024 root FALSE <NA> <NA>
#> 32 47 Washington 17.000000 0.000000 root TRUE <NA> <NA>
#> 33 37 Oregon 18.000000 0.000000 root TRUE <NA> <NA>
#> 34 50 Wyoming 19.000000 0.000000 root TRUE <NA> <NA>
#> 35 36 Oklahoma 20.000000 0.000000 root TRUE <NA> <NA>
#> 36 46 Virginia 21.000000 0.000000 root TRUE <NA> <NA>
#> 37 NA <NA> 20.500000 7.355270 root FALSE <NA> <NA>
#> 38 NA <NA> 19.750000 10.736739 root FALSE <NA> <NA>
#> 39 NA <NA> 18.875000 12.878100 root FALSE <NA> <NA>
#> 40 NA <NA> 17.937500 16.425489 root FALSE <NA> <NA>
#> 41 39 Rhode Island 22.000000 0.000000 root TRUE <NA> <NA>
#> 42 21 Massachusetts 23.000000 0.000000 root TRUE <NA> <NA>
#> 43 30 New Jersey 24.000000 0.000000 root TRUE <NA> <NA>
#> 44 NA <NA> 23.500000 11.456439 root FALSE <NA> <NA>
#> 45 NA <NA> 22.750000 22.595978 root FALSE <NA> <NA>
#> 46 NA <NA> 20.343750 26.713777 root FALSE <NA> <NA>
#> 47 25 Missouri 25.000000 0.000000 root TRUE <NA> <NA>
#> 48 4 Arkansas 26.000000 0.000000 root TRUE <NA> <NA>
#> 49 42 Tennessee 27.000000 0.000000 root TRUE <NA> <NA>
#> 50 NA <NA> 26.500000 12.614278 root FALSE <NA> <NA>
#> 51 NA <NA> 25.750000 20.198479 root FALSE <NA> <NA>
#> 52 10 Georgia 28.000000 0.000000 root TRUE <NA> <NA>
#> 53 6 Colorado 29.000000 0.000000 root TRUE <NA> <NA>
#> 54 43 Texas 30.000000 0.000000 root TRUE <NA> <NA>
#> 55 NA <NA> 29.500000 14.501034 root FALSE <NA> <NA>
#> 56 NA <NA> 28.750000 23.972143 root FALSE <NA> <NA>
#> 57 NA <NA> 27.250000 29.054195 root FALSE <NA> <NA>
#> 58 NA <NA> 23.796875 44.837933 root FALSE <NA> <NA>
#> 59 12 Idaho 31.000000 0.000000 root TRUE <NA> <NA>
#> 60 27 Nebraska 32.000000 0.000000 root TRUE <NA> <NA>
#> 61 17 Kentucky 33.000000 0.000000 root TRUE <NA> <NA>
#> 62 26 Montana 34.000000 0.000000 root TRUE <NA> <NA>
#> 63 NA <NA> 33.500000 3.834058 root FALSE <NA> <NA>
#> 64 NA <NA> 32.750000 12.438692 root FALSE <NA> <NA>
#> 65 NA <NA> 31.875000 15.026107 root FALSE <NA> <NA>
#> 66 35 Ohio 35.000000 0.000000 root TRUE <NA> <NA>
#> 67 44 Utah 36.000000 0.000000 root TRUE <NA> <NA>
#> 68 NA <NA> 35.500000 6.637771 root FALSE <NA> <NA>
#> 69 14 Indiana 37.000000 0.000000 root TRUE <NA> <NA>
#> 70 16 Kansas 38.000000 0.000000 root TRUE <NA> <NA>
#> 71 NA <NA> 37.500000 3.929377 root FALSE <NA> <NA>
#> 72 7 Connecticut 39.000000 0.000000 root TRUE <NA> <NA>
#> 73 38 Pennsylvania 40.000000 0.000000 root TRUE <NA> <NA>
#> 74 NA <NA> 39.500000 8.027453 root FALSE <NA> <NA>
#> 75 NA <NA> 38.500000 13.352260 root FALSE <NA> <NA>
#> 76 NA <NA> 37.000000 15.122897 root FALSE <NA> <NA>
#> 77 NA <NA> 34.437500 20.598507 root FALSE <NA> <NA>
#> 78 11 Hawaii 41.000000 0.000000 root TRUE <NA> <NA>
#> 79 48 West Virginia 42.000000 0.000000 root TRUE <NA> <NA>
#> 80 19 Maine 43.000000 0.000000 root TRUE <NA> <NA>
#> 81 41 South Dakota 44.000000 0.000000 root TRUE <NA> <NA>
#> 82 NA <NA> 43.500000 8.537564 root FALSE <NA> <NA>
#> 83 NA <NA> 42.750000 10.771175 root FALSE <NA> <NA>
#> 84 34 North Dakota 45.000000 0.000000 root TRUE <NA> <NA>
#> 85 45 Vermont 46.000000 0.000000 root TRUE <NA> <NA>
#> 86 NA <NA> 45.500000 13.044922 root FALSE <NA> <NA>
#> 87 23 Minnesota 47.000000 0.000000 root TRUE <NA> <NA>
#> 88 49 Wisconsin 48.000000 0.000000 root TRUE <NA> <NA>
#> 89 15 Iowa 49.000000 0.000000 root TRUE <NA> <NA>
#> 90 29 New Hampshire 50.000000 0.000000 root TRUE <NA> <NA>
#> 91 NA <NA> 49.500000 2.291288 root FALSE <NA> <NA>
#> 92 NA <NA> 48.750000 10.184218 root FALSE <NA> <NA>
#> 93 NA <NA> 47.875000 18.993398 root FALSE <NA> <NA>
#> 94 NA <NA> 46.687500 27.779904 root FALSE <NA> <NA>
#> 95 NA <NA> 44.718750 33.117815 root FALSE <NA> <NA>
#> 96 NA <NA> 42.859375 41.094765 root FALSE <NA> <NA>
#> 97 NA <NA> 38.648438 54.746831 root FALSE <NA> <NA>
#> 98 NA <NA> 31.222656 89.232093 root FALSE <NA> <NA>