Convert MAF
object to a matrix:
fortify_matrix.MAF
: Extract genomic alterations for genes.fortify_matrix.MAF_pathways
: Extract genomic alterations for pathways.tune.MAF()
helps convertMAF
object to aMAF_pathways
object.
Usage
# S3 method for class 'MAF'
fortify_matrix(
data,
...,
genes = NULL,
n_top = NULL,
remove_empty_genes = TRUE,
remove_empty_samples = TRUE,
collapse_vars = TRUE,
use_syn = TRUE,
missing_genes = "error",
data_arg = NULL,
call = NULL
)
# S3 method for class 'MAF_pathways'
fortify_matrix(
data,
...,
pathdb = "smgbp",
remove_empty_pathways = TRUE,
remove_empty_samples = TRUE,
data_arg = NULL,
call = NULL
)
Arguments
- data
A
MAF
object.- ...
These dots are for future extensions and must be empty.
- genes
An atomic character defines the genes to draw.
- n_top
A single number indicates how many top genes to be drawn.
- remove_empty_genes
A single boolean value indicats whether to drop genes without any genomic alterations.
- remove_empty_samples
A single boolean value indicats whether to drop samples without any genomic alterations.
- collapse_vars
A single boolean value indicating whether to collapse multiple alterations in the same sample and gene into a single value
"Multi_Hit"
. Alternatively, you can provide a single string indicates the collapsed values.- use_syn
A single boolean value indicates whether to include synonymous variants when Classifies SNPs into transitions and transversions.
- missing_genes
A string, either
"error"
or"remove"
, specifying the action for handling missing genes.- data_arg
The argument name for
data
. Developers can use it to improve messages. Not used by the user.- call
The execution environment where
data
and other arguments for the method are collected. Developers can use it to improve messages. Not used by the user.- pathdb
A string of
"smgbp"
or"sigpw"
, or a named list of genes to define the pathways.- remove_empty_pathways
A single boolean value indicats whether to drop pathways without any genomic alterations.
ggalign attributes
For fortify_matrix.MAF
:
gene_summary
: A data frame of gene summary informations. Seemaftools::getGeneSummary()
for details.sample_summary
: A data frame of sample summary informations. Seemaftools::getSampleSummary()
for details.sample_anno
: A data frame of sample clinical informations. Seemaftools::getClinicalData()
for details.variant_weights
: A data frame of variant weights. Each gene in a sample is assigned a total weight of1
. When multiple variants occur in the same gene-sample pair, the weight for each variant reflects its proportion of the total.n_genes
: Total number of genes.n_samples
: Total number of samples.titv
: A list of data frame with Transitions and Transversions summary. Seemaftools::titv()
for details.
The levels of Variant_Classification
will be stored in ggalign_lvls()
.
If they do not exist, alphabetical ordering will be used.
For fortify_matrix.MAF_pathways
:
gene_list
: the pathway contents.pathway_summary
: pathway summary informations. Seemaftools::pathways()
for details.sample_summary
: sample summary informations. Seemaftools::getSampleSummary()
for details.sample_anno
: sample clinical informations. Seemaftools::getClinicalData()
for details.