library(ComplexHeatmap)
#> Loading required package: grid
#> ========================================
#> ComplexHeatmap version 2.22.0
#> Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
#> Github page: https://github.com/jokergoo/ComplexHeatmap
#> Documentation: http://jokergoo.github.io/ComplexHeatmap-reference
#>
#> If you use it in published research, please cite either one:
#> - Gu, Z. Complex Heatmap Visualization. iMeta 2022.
#> - Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional
#> genomic data. Bioinformatics 2016.
#>
#>
#> The new InteractiveComplexHeatmap package can directly export static
#> complex heatmaps into an interactive Shiny app with zero effort. Have a try!
#>
#> This message can be suppressed by:
#> suppressPackageStartupMessages(library(ComplexHeatmap))
#> ========================================
library(pheatmap)
#>
#> Attaching package: 'pheatmap'
#> The following object is masked from 'package:ComplexHeatmap':
#>
#> pheatmap
library(gplots)
#>
#> Attaching package: 'gplots'
#> The following object is masked from 'package:stats':
#>
#> lowess
library(ggalign)
#> Loading required package: ggplot2
Compared with other packages
A simple heatmap.
bench::mark(
"heatmap()" = {
pdf(NULL)
heatmap(mat, Rowv = NA, Colv = NA)
dev.off()
NULL
},
"heatmap.2()" = {
pdf(NULL)
heatmap.2(mat, dendrogram = "none", trace = "none")
dev.off()
NULL
},
"Heatmap()" = {
pdf(NULL)
draw(Heatmap(mat,
cluster_rows = FALSE, cluster_columns = FALSE,
use_raster = TRUE
))
dev.off()
NULL
},
"pheatmap()" = {
pdf(NULL)
pheatmap(mat, cluster_rows = FALSE, cluster_cols = FALSE)
dev.off()
NULL
},
"ggalign()" = {
pdf(NULL)
print(ggheatmap(mat, filling = "raster"))
dev.off()
NULL
}
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 5 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 heatmap() 149.03ms 272.05ms 3.68 139.11MB 5.51
#> 2 heatmap.2() 2.27s 2.27s 0.441 224.23MB 0.441
#> 3 Heatmap() 4.37s 4.37s 0.229 792.59MB 2.75
#> 4 pheatmap() 840.69ms 840.69ms 1.19 124.1MB 1.19
#> 5 ggalign() 1.91s 1.91s 0.523 2.51GB 12.0
For heatmap with dendrogram
bench::mark(
"heatmap()" = {
pdf(NULL)
heatmap(mat)
dev.off()
NULL
},
"heatmap.2()" = {
pdf(NULL)
heatmap.2(mat, trace = "none")
dev.off()
NULL
},
"Heatmap()" = {
pdf(NULL)
draw(Heatmap(mat,
row_dend_reorder = FALSE, column_dend_reorder = FALSE,
use_raster = TRUE
))
dev.off()
NULL
},
"pheatmap()" = {
pdf(NULL)
pheatmap(mat)
dev.off()
NULL
},
"ggalign()" = {
pdf(NULL)
print(ggheatmap(mat, filling = "raster") +
anno_top() + align_dendro() +
anno_right() + align_dendro())
dev.off()
NULL
}
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 5 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 heatmap() 2.68s 2.68s 0.374 173.72MB 1.49
#> 2 heatmap.2() 2.81s 2.81s 0.356 223.41MB 1.07
#> 3 Heatmap() 5.86s 5.86s 0.171 1.51GB 1.71
#> 4 pheatmap() 2.22s 2.22s 0.450 177.53MB 0.450
#> 5 ggalign() 4.95s 4.95s 0.202 2.58GB 4.65